ARTIFICIAL INTELLIGENCE COURSE TRAINING IN                         HYDERABAD

About LearnAi.co.in

LearnAI.co.in is a leading training institute committed to empowering individuals at all skill levels in the field of artificial intelligence. Our comprehensive AI courses cater to beginners, intermediates, and experts, ensuring a tailored learning experience for everyone. Whether you're just starting your AI journey or looking to refine your expertise, our expert instructors provide hands-on training, practical insights, and real-world projects to help you master AI concepts. Join us at LearnAI.co.in and embark on a transformative educational journey to become proficient in artificial intelligence.

Upcoming Batches

CourseBranchTraining TypeWeekDay
Artificial IntelligenceDilsukhnagarHybrid1stWednesday
Artificial IntelligenceDilsukhnagarHybrid2ndMonday
Artificial IntelligenceDilsukhnagarHybrid3rdWednesday
Artificial IntelligenceDilsukhnagarHybrid4thMonday

What is Artificial intelligence?

Artificial Intelligence, often referred to as AI, is a technology that enables machines and computers to think and make decisions like humans. It involves creating smart algorithms and systems that can process data, learn from it, and use that knowledge to perform tasks and solve problems.

Why to learnArtificial intelligence?

Learning artificial intelligence is crucial for career growth because it opens up a world of opportunities in industries like healthcare, finance, and technology, where AI is revolutionizing the way businesses operate. With a strong foundation in AI, you'll be well-positioned to secure high-paying jobs and stay at the forefront of the rapidly evolving job market.

Who can Pursue Artificial intelligence?

  • Any Degree pursuing or Graduated,
  • Bachelor’s, Master’s, PhD, and
  • Anyone interested in course
Enroll to Course Now

COURSE CURRICULUM

Python

  • Introduction
  • Installation
  • Fundamental of Python
  • Variables
  • Comments
  • Print Statement
  • Operators
  • Mutable Data Types
  • Data Types
  • Special Data Types
  • Conditions
  • Loops
  • Functions
  • Break, Continue and Pass Statements
  • String Object and working
  • List
  • Tuple
  • Set
  • Dictionaries
  • Map
  • Reduce
  • Filter
  • Classes
  • Objects
  • Inheritance
  • Multiple Inheritance
  • Modules
  • Error Handling

Data Visualization

  • Matplotlib
  • Seaborn
  • Plotly
  • Cuflinks
  • Bokesh

Libraries

  • Numpy
  • Pandas
  • Random
  • Math
  • Scipy
  • sklearn
  • Keras
  • Tensorflow
  • OpenCV
  • NLTK
  • Spacy
  • Lot more…

Tableau

  • Introduction to Data Visualization
  • Introduction to Tableau
  • Basics charts and dashboards
  • Special Char Types
  • Dashboard design and principles
  • Connections with servers
  • Local file access
  • Hands on experience with worksheet

Web Scraping

  • Url
  • Beautiful Soup

Data base

  • SQL
  • MongoDB

Statistics

  • Basics of Statistics
  • Descriptive Statistics
  • Inferential Statistics
  • Qualitative Analysis
  • Quantitative Analysis
  • Hypothesis Testing
  • Data Distribution
  • Probability Distribution
  • Normal Distribution
  • Poison Distribution
  • Outlier Detection
  • Other Statistical Fundamentals

Machine Learning

  • Supervised Learning
  • Unsupervised Learning
  • Semi Supervised Learning
  • Reinforcement Learning

Supervised Learning

  1. Regression Models
  2. Classification Models

Regression Models

  • Introduction to Regression Models
  • Linear Models
  • Linear Regression
  • Multiple Regression
  • Ordinary Least Square Method
  • Non-Linear Models
  • Support Vector Regressor
  • Random Forest Regressor
  • Decision Tree

Evaluation Metrics for Regression Models

  • R-Square
  • Adjusted R Square
  • Mean Square Error
  • Root Mean Square Error
  • Mean Absolute Error

Classification Models

  • Introduction to Classification Models
  • Logistics Regression
  • Naïve Bayes
  • Support Vector Classifier
  • K-NN Classifier
  • Decision Tree Classifier
  • Random Forest Classifier

Evaluation Metrics for Classification Models

  • Accuracy
  • Precision
  • Recall
  • F1 Score
  • ROC Curve

Unsupervised Learning

  • Introduction to Unsupervised Learning

Clustering Models

  • Introduction to Clustering Models
  • K- Mean Clustering
  • Hierarchical Clustering
  • High Dimensional Clustering

Dimension Reduction

  • Principal Component Analysis (PCA) Reinforcement Learning

Reinforcement Learning

  • Introduction to Reinforcement Learning

Featurization, Model Selection & Tuning

  • Feature Extraction
  • Model Defects & Evaluation Metrics
  • Model Selection and Tuning
  • Comparison of machine learning models

Neural Networks

  • Introduction to Deep Learning
  • Fundamental of Neural Networks
  • TensorFlow and Keras
  • Artificial Neural Networks (ANN)
  • Convolution Neural Networks (CNN)
  • Recurrent Neural Networks (RNN)
  • Evaluation of Deep Learning
  • Neural Networks Basics
  • Gradient Descent
  • Introduction to Perceptron & Neural Networks
  • Batch Normalization
  • Activation and Loss Functions
  • Hyper parameter tuning
  • SoftMax
  • Deep Neural Networks
  • Weights initialization

Image Pre-processing

  • Computer Vision
  • Open CV
  • Noise Detection
  • Noise Reduce
  • Low Pass Filters
  • Forward Propagation
  • Backward Propagation
  • Pooling & Padding

Natural Language Processing

  • Introduction to NLP
  • Corpus
  • Natural Language Understanding (NLU)
  • Natural Language Generator (NLG)
  • Tokenization (Word, Sentence, Blank, RegEx)
  • Frequency Distribution
  • Filtering
  • Stemming
  • Lemmatization
  • Stop Words
  • Regular Expressions
  • POS Tagging
  • Syntax Tree
  • Chunking
  • Lemmas
  • Hypernyms
  • Hyponyms
  • Synonyms
  • Antonyms
  • Distance Between words
  • Wordnet
  • Name Entity Recognition
  • Bag of words or Document Matrix
  • Count Vectorization
  • Term Frequency
  • Inverse Document Frequency
  • Sentimental Analysis

Job Roles

  • Machine Learning Engineer
  • Data Scientist
  • AI Research Scientist
  • AI Developer
  • Computer Vision Engineer
  • Natural Language Processing (NLP) Engineer
  • AI Product Manager
  • AI Ethicist
  • AI Consultant
  • AI Sales Specialist

Components of Artificial intelligence

  • Hardware Infrastructure
  • Software Frameworks
  • Data Sources
  • AI Models and Algorithms
  • Data Preprocessing Tools
  • Cloud Services
  • Development and Integrated Development Environments (IDEs)
  • AI Development Libraries
  • Version Control Systems
  • Model Evaluation and Testing Tools
  • AI Deployment Platforms
  • Monitoring and Maintenance Tools
  • AI Development Teams
  • Ethics and Compliance Frameworks
  • Data Security and Privacy Measures
  • Documentation and Knowledge Management

What We Offer

24/7 Portal Access
Domain Expertise Trainers
Industrial Standard Course Structure
Job Oriented Programs
Recording Sessions
Assignments on Real time Scenarios
Job Support
Resume Preparations
Internships
Job Assistance
Working on Real Time Projects
Course Completion Certifications

We Provide Higher Quality Services

AND YOU’LL GET SOLUTIONS FOR EVERYTHING
Best Artificial Intelligence Training in Hyderabad with 100% placement Assistance. Learn Data Science with Python, Data Analysis, Artificial Intelligence, Machine Learning, Deep Learning, NLP, Statistics and Tableau.

Branches

KPHBSR NagarSecunderabad
Phone: +91 9390023585
Email: info@learnai.co.in

Head Office

Address: 1st Floor, Rajadhani Theatre Complex, Pillar Number 1546, above Siri Mobiles, Dilsukhnagar, Hyderabad, Telangana 500060.
Phone: +91 9390023585
Email: info@learnai.co.in
© 2024 LearnAI.co.in All rights reserved.