DATA ENGINEERING COURSE TRAINING IN HYDERABAD

About LearnAi.co.in

LearnAI.co.in is your premier destination for Data Engineering training, catering to learners of all levels – from beginners to intermediates and experts. Our expertly designed courses are structured to provide a seamless learning experience. Beginners will find comprehensive introductory modules that lay the foundation, while intermediate learners can dive deeper into data pipelines, ETL processes, and data warehousing. Experts can further enhance their skills with advanced topics like big data technologies, real-time data processing, and optimizing data workflows. Join us at LearnAI.co.in to embark on a data engineering journey that's tailored to your level of expertise and designed for your success.

Upcoming Batches

CourseBranchTraining TypeWeekDay
Data EngineeringDilsukhnagarHybrid1stWednesday
Data EngineeringDilsukhnagarHybrid2ndMonday
Data EngineeringDilsukhnagarHybrid3rdWednesday
Data EngineeringDilsukhnagarHybrid4thMonday

What is Data Engineering?

Data engineering simplifies big data by collecting, organizing, and preparing it for analysis. It's like building a smooth highway for data to travel on, making it easy to access and understand, helping businesses make informed decisions.

Why to learn Data Engineering?

Learning data engineering is a smart career move as it's in high demand, with companies relying on data for strategic decisions. With expertise in data engineering, you can unlock exciting job opportunities and substantial career growth in the ever-expanding world of data-driven industries.

Who can Pursue Data Engineering?

  • Any Degree pursuing or Graduated,
  • Bachelor’s, Master’s, PhD, and
  • Anyone interested in course
Enroll to Course Now

COURSE CURRICULUM

Python

  • Introduction
  • Installation
  • Fundamental of Python
  • Variables
  • Comments
  • Print Statement
  • Operators
  • Mutable Data Types
  • Data Types
  • Special Data Types
  • Conditions
  • Loops
  • Functions
  • Break, Continue and Pass Statements
  • String Object and working
  • List
  • Tuple
  • Set
  • Dictionaries
  • Map
  • Reduce
  • Filter
  • Classes
  • Objects
  • Inheritance
  • Multiple Inheritance
  • Modules
  • Error Handling

Data Visualization

  • Matplotlib
  • Seaborn
  • Plotly
  • Cuflinks
  • Bokesh

Libraries

  • Numpy
  • Pandas
  • Random
  • Math
  • Scipy
  • sklearn
  • Keras
  • Tensorflow
  • OpenCV
  • NLTK
  • Spacy
  • Lot more…

Tableau

  • Introduction to Data Visualization
  • Introduction to Tableau
  • Basics charts and dashboards
  • Special Char Types
  • Dashboard design and principles
  • Connections with servers
  • Local file access
  • Hands on experience with worksheet

Web Scraping

  • Url
  • Beautiful Soup

Data base

  • SQL
  • MongoDB

Statistics

  • Basics of Statistics
  • Descriptive Statistics
  • Inferential Statistics
  • Qualitative Analysis
  • Quantitative Analysis
  • Hypothesis Testing
  • Data Distribution
  • Probability Distribution
  • Normal Distribution
  • Poison Distribution
  • Outlier Detection
  • Other Statistical Fundamentals

Machine Learning

  • Supervised Learning
  • Unsupervised Learning
  • Semi Supervised Learning
  • Reinforcement Learning

Supervised Learning

  1. Regression Models
  2. Classification Models

Regression Models

  • Introduction to Regression Models
  • Linear Models
  • Linear Regression
  • Multiple Regression
  • Ordinary Least Square Method
  • Non-Linear Models
  • Support Vector Regressor
  • Random Forest Regressor
  • Decision Tree

Evaluation Metrics for Regression Models

  • R-Square
  • Adjusted R Square
  • Mean Square Error
  • Root Mean Square Error
  • Mean Absolute Error

Classification Models

  • Introduction to Classification Models
  • Logistics Regression
  • Naïve Bayes
  • Support Vector Classifier
  • K-NN Classifier
  • Decision Tree Classifier
  • Random Forest Classifier

Evaluation Metrics for Classification Models

  • Accuracy
  • Precision
  • Recall
  • F1 Score
  • ROC Curve

Unsupervised Learning

  • Introduction to Unsupervised Learning

Clustering Models

  • Introduction to Clustering Models
  • K- Mean Clustering
  • Hierarchical Clustering
  • High Dimensional Clustering

Dimension Reduction

  • Principal Component Analysis (PCA) Reinforcement Learning

Reinforcement Learning

  • Introduction to Reinforcement Learning

Featurization, Model Selection & Tuning

  • Feature Extraction
  • Model Defects & Evaluation Metrics
  • Model Selection and Tuning
  • Comparison of machine learning models

Neural Networks

  • Introduction to Deep Learning
  • Fundamental of Neural Networks
  • TensorFlow and Keras
  • Artificial Neural Networks (ANN)
  • Convolution Neural Networks (CNN)
  • Recurrent Neural Networks (RNN)
  • Evaluation of Deep Learning
  • Neural Networks Basics
  • Gradient Descent
  • Introduction to Perceptron & Neural Networks
  • Batch Normalization
  • Activation and Loss Functions
  • Hyper parameter tuning
  • SoftMax
  • Deep Neural Networks
  • Weights initialization

Image Pre-processing

  • Computer Vision
  • Open CV
  • Noise Detection
  • Noise Reduce
  • Low Pass Filters
  • Forward Propagation
  • Backward Propagation
  • Pooling & Padding

Natural Language Processing

  • Introduction to NLP
  • Corpus
  • Natural Language Understanding (NLU)
  • Natural Language Generator (NLG)
  • Tokenization (Word, Sentence, Blank, RegEx)
  • Frequency Distribution
  • Filtering
  • Stemming
  • Lemmatization
  • Stop Words
  • Regular Expressions
  • POS Tagging
  • Syntax Tree
  • Chunking
  • Lemmas
  • Hypernyms
  • Hyponyms
  • Synonyms
  • Antonyms
  • Distance Between words
  • Wordnet
  • Name Entity Recognition
  • Bag of words or Document Matrix
  • Count Vectorization
  • Term Frequency
  • Inverse Document Frequency
  • Sentimental Analysis

Job Roles

  • Data Engineer
  • Big Data Architect
  • ETL Developer
  • Data Analyst
  • Machine Learning Engineer
  • Cloud Data Engineer
  • Data Warehouse Developer
  • Business Intelligence Developer
  • Data Scientist
  • Database Administrator

Components of Data Engineering

  • Data Sources
  • ETL (Extract, Transform, Load) Tools
  • Data Integration Platforms
  • Data Warehouses
  • Data Lakes
  • Streaming Data Platforms
  • SQL and NoSQL Databases
  • Data Modeling Tools
  • Data Quality and Governance Tools
  • Batch Processing Frameworks
  • Big Data Technologies
  • Cloud Services
  • Data Pipelines
  • Data Orchestration Tools
  • Data Security Solutions
  • Monitoring and Logging Tools
  • Version Control Systems
  • Containerization and Orchestration
  • Data Visualization Tools
  • Collaboration and Communication Tools

What We Offer

24/7 Portal Access
Domain Expertise Trainers
Industrial Standard Course Structure
Job Oriented Programs
Recording Sessions
Assignments on Real time Scenarios
Job Support
Resume Preparations
Internships
Job Assistance
Working on Real Time Projects
Course Completion Certifications

We Provide Higher Quality Services

AND YOU’LL GET SOLUTIONS FOR EVERYTHING
Best Artificial Intelligence Training in Hyderabad with 100% placement Assistance. Learn Data Science with Python, Data Analysis, Artificial Intelligence, Machine Learning, Deep Learning, NLP, Statistics and Tableau.

Branches

KPHBSR NagarSecunderabad
Phone: +91 9390023585
Email: info@learnai.co.in

Head Office

Address: 1st Floor, Rajadhani Theatre Complex, Pillar Number 1546, above Siri Mobiles, Dilsukhnagar, Hyderabad, Telangana 500060.
Phone: +91 9390023585
Email: info@learnai.co.in
© 2024 LearnAI.co.in All rights reserved.